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Abstract
The electrical impedance tomography (EIT) problem consists in determining the 
distribution of the electrical conductivity of a medium subject to a set of current 
fluxes, from measurements of the corresponding electrical potentials on its 
boundary. EIT is probably the most studied inverse problem since the fundamental 
works by Calderón from the 1980s. It has many relevant applications in medicine 
(detection of tumors), geophysics (localization of mineral deposits) and engineering 
(detection of corrosion in structures). In this work, we are interested in reconstructing 
a number of anomalies with different electrical conductivity from the background. 
Since the EIT problem is written in the form of an overdetermined boundary value 
problem, the idea is to rewrite it as a topology optimization problem. In particular, 
a shape functional measuring the misfit between the boundary measurements and 
the electrical potentials obtained from the model is minimized with respect to a set 
of ball-shaped anomalies by using the concept of topological derivatives. It means 
that the objective functional is expanded and then truncated up to the second order 
term, leading to a quadratic and strictly convex form with respect to the parameters 
under consideration. Thus, a trivial optimization step leads to a non-iterative second 
order reconstruction algorithm. As a result, the reconstruction process becomes 
very robust with respect to noisy data and independent of any initial guess. Finally, 
in order to show the effectiveness of the devised reconstruction algorithm, some 
numerical experiments into two spatial dimensions are presented, taking into 
account total and partial boundary measurements.

Keywords: EIT problem, new reconstruction algorithm, topological 
asymptotic expansion, topological derivatives
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1. Introduction

A wide class of inverse problems can be written in the form of overdetermined boundary 
value problems. Such a difficult problem can be overcome by rewriting the inverse problem 
in the form of an optimization problem. The basic idea consists in minimizing an objective 
functional measuring the misfit between a given data and a numerical solution with respect to 
the parameters under consideration. In particular, let us consider a geometrical domain Ω with 
its boundary denoted as Γ = ∂Ω. A boundary value problem is defined in Ω, whose solution is 
denoted by ∗u . We assume that the response of the system on the boundary Γ can be observed. 
For example, given a Dirichlet data U on Γ, the associated Dirichlet-to-Neumann map for a 
second order elliptic equation is defined as follows [8]

   Λ = = ∂ Γω
∗ ∗∗ �u U Q u: : on .n

where ω∗ is an unknown set of anomalies embedded within Ω and n is the exterior unit nor-
mal vector on Γ. Therefore, given the pair (U, Q) we want to reconstruct the set ⊂ω Ω∗ . The 
mathematical model of the system furnishes the mapping ω Λω�  for a family of anomalies ω. 
Thus, taking U we can generate the output of the model ( )Λω U  and compare it with the given 
function ( )= Λω∗Q U . Hence, using the mathematical model we can consider the associated 
optimization problem based on the distance minimization between the observation (U, Q) and 
the model response ( ( ))ΛωU U,  over the family of admissible anomalies ω.

In this paper the electrical impedance tomography (EIT) is adopted as a model problem, 
which consists in finding the number, size, shape and location of a set of hidden anomalies 
inside a body from total or partial measurements of the electrical potential on the boundary 
of the body.

Since the unknown of the problem we are dealing with is given by a geometrical domain 
ω∗ representing the set of hidden anomalies, then it can be written in the form of a topology 
optimization problem. Thus, the topological derivative concept is used [26], which can be seen 
as a particular case of the broader class of asymptotic methods fully developed in the books by 
Ammari & Kang [4] and Ammari et al [2], for instance. See also related works [22–25]. In the 
context of EIT problem, important contributions can be found in [6, 10–12, 16–18]. The stabil-
ity and resolution analysis for a (first-order) topological derivative based imaging functional in 
the context of Helmholtz equation is known [3]. However, such an analysis is missing for the 
conductivity problem we are dealing with. Therefore, the second-order topological derivative 
concept starts to plays an important role in the context of the inverse conductivity problem. 
In particular, it has been successfully applied for solving a class of EIT problem in [7, 13]. 
In the paper [7] a higher order expansion of a tracking-type shape functional with respect to 
a number of arbitrary shaped inclusion is derived, all of them controled by the same small 
parameter. The resulting expansion is used to reconstruct a single circular or elliptical inclu-
sion from partial boundary measurement. In [13] a second-order topological expansions of a 
tracking-type shape functional is also considered with respect to several circular inclusions of 
uniform sizes. The resulting expansion is used to initialize a standard level set method.

In our approach the anomalies are approximated by a finite number of ball-shaped trial 
inclusions of different sizes. In addition, we have evoked the adjoint method a posteriori, after 
obtaining the associated sensitivities, allowing us to derive a simpler representation for the 
resulting expansion. These two ingredients were crucial in the development of the proposed 
novel reconstruction algorithm, which represents the main contribution of our paper with 
respect to [7, 13]. In particular, following the original ideas presented in [9], the objective 
functional is expanded and then truncated up to the second order term, leading to a quadratic 
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and strictly convex form with respect to the parameters under consideration. Finally, a trivial 
optimization step leads to a non-iterative second order reconstruction algorithm. As a result, 
the reconstruction process becomes very robust with respect to noisy data and independent 
of any initial guess, allowing us to approximate the topology as well the shape of the hidden 
anomalies through a number of trial balls. Therefore, our approach can be used either as a 
standalone tool to accurately and quickly detect a set of hidden anomalies, even with several 
connected components, or as an initialization for more complex iterative approaches such as 
the ones based on level-sets methods [15, 19], for instance.

The paper is organized as follows. In section 2 the mathematical formulation of the inverse 
EIT problem is introduced and rewritten as a topological optimization problem. In section 3 
the second order topological expansion of the shape functional is presented. The novel non-
iterative reconstruction algorithm is devised in section 4. Some reconstruction experiments 
from total and partial boundary measurements are presented in section 5. Finally, in section 6 
the paper ends with some concluding remarks.

2. The inverse conductivity problem

Let us consider a domain R⊂Ω 2 with Lipschitz continuous boundary ∂Ω. The domain Ω rep-
resents a body endowed with the capability of conducting electricity. Its electrical conductiv-
ity coefficient is denoted by ( ) ⩾ >∗k x k 00 , with ∈Ωx  and R∈ +k0 . If the body Ω is subjected 
to a given electric flux Q on ∂Ω, then the resulting electric potential u in Ω is observed on a 
part of the boundary ⊂Γ ∂Ωm . The objective is to reconstruct the electrical conductivity ∗k  

over Ω from a given boundary measurement =|
∗
Γ

u U
m

, solution of the following overdeter-
mined boundary value problem

[ ( )]
( )

( )

= Ω
= − ∇

⋅ = ∂Ω
= Γ

∗

∗ ∗ ∗

∗

∗

⎧

⎨
⎪⎪

⎩
⎪⎪

q u
q u k u

q u n Q
u U

div 0 in ,
,

on ,
on .m

 (1)

Without loss of generality, we are considering only one boundary measurement U on Γm. The 
extension to several boundary measurements is trivial.

An important feature of the human body is that the electrical conductivity can be approxi-
mated by a piecewise constant function representing different tissues. The electrical conductiv-
ity of the muscles, lungs, bones and blood are respectively given by 8.0, 1.0, 0.06 and 6.7 mS,  
for instance. Thus, we assume that the unknown electrical conductivity ∗k  we are looking for 
belongs to the following set

1 1( ) ( ) ( )
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟
⎫
⎬
⎭

∑ϕ ϕ γΩ = ∈ Ω = − −γ ω
∞

Ω
=

C L k: : 1 ,
i

N

i
1

i (2)

where R∈ +k  is the electrical conductivity of the background. When the conductivity k depends 
on the frequency, see [1]. The sets ⊂ω Ωi , with = �i N1, , , are such that ω ω∩ = ∅i j , for 
≠i j. In addition, 1Ω and 1ωi are used to denote the characteristics functions of Ω and ωi, 

respectively. Finally, Rγ ∈ +i  are the contrasts with respect to the electrical conductivity of the 
background k. From these elements, the inverse problem we are dealing with can be stated as:

Problem 1. Let ( )/∈ ∂Ω−Q H 1 2  be a given Neumann excitation, then find ( )∈ Ωγ∗k C  from 
observations of the field U on ⊂Γ ∂Ωm , such that [ ] ( )∈ Ω∗ ∗u k H1  satisfies (1).
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We assume that each ωi is measurable and simply connected. We also assume that the val-
ues of the electrical conductivity of the background k and the associated contrasts γi are known 
(see counter-example at the end of this section). From these assumptions, problem 1 can be 
written as a topology optimization problem with respect to the sets ωi, for = �i N1, , . In fact, 

let us introduce the unknown set ⊂ω ω= Ω∗
=

∗
∗

⋃i

N
i

1
, where ∗N  is the number of anomalies we 

are looking for. Therefore

( )
\⎧

⎨
⎩

ω
γ ω

=
∈Ω
∈ =

∗
∗

∗ ∗�
k x

k x

k x i N

if ,
if , 1, , .i i

 (3)

See sketch in figure 1(a). Now, let us introduce the following auxiliary Neumann boundary 
value problem: find u, such that

[ ( )]
( )

( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪⎪

∫
∫ ∫

= Ω
= − ∇

⋅ = ∂Ω

=

=

ω

∂Ω

Γ Γ

q u
q u k u

q u n Q

Q

u U

div 0 in ,
,

on ,

0,

,
m m

 (4)

where Q and U are the boundary excitation and boundary measurement, respectively and 
( )∈ Ωω γk C  is constant by parts, characterized by a set ⊂ω Ω. See sketch in figure 1(b).

Finally, we introduce the following shape functional measuring the misfit between the 
boundary measurement U and the solution ( )ω=u u  of (4) evaluated on Γm, namely

( ) ( )∫= −ω
Γ

J u u U .2

m
 (5)

Since the electrical conductivity of the background k and the associated contrasts γi are known 
by assumption, then solving problem 1 is equivalent to solve the following topology optim-
ization problem with respect to the support ω of the anomalies

( )    ( )
⊂ω

ω
Ω
J uMinimize , subject to 4 . (6)

The problem of finding ( )∈ Ωγ∗k C  for a given Dirichlet excitation U on ∂Ω, from observa-
tions of the flux Q on ⊂Γ ∂Ωm , by using similar optimization approach can be found in [5].

(a) (b)

Figure 1. A body Ω with a set of anomalies. (a) ω∗. (b) ω.
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Remark 2. In the case of the EIT problem in general a number M of boundary measure-
ments is available, which are easily obtained by combining different pairs of injection and 
draining electrodes. See sketch in figure 4, for instance. However, for the sake of simplicity 
and without lost of generality, in this paper all derivations are presented by taking into ac-
count just one single boundary measurement. Their extensions for a number M  >  1 of meas-
urements is trivially obtained after sum-up the sensitivities associated with each individual 
boundary measurement.

The minimization problem (6) we are dealing with is based on the following paradigm: 
we know what we are looking for, but we do not know where they are. In fact, we cannot 
reconstruct both the topology ω∗ and the contrasts γi, =

∗�i N1, , . Let us present a simple 
counter-example. It consists of an inclusion of radius ρ and contrast γ centered into a disk of 
unity radius with electrical conductivity k  =  1. We introduce a polar coordinate system ( )θr,  
at the center of the inclusion. The disk is excited with an electric flux ( )θ=Q sin  applied on 
its boundary. The solution ( )θ=u u r,  of problem (4), evaluated on the boundary of the disk, 
is given by ( ) ( )θ β θ=u 1, sin , with

( ) ( )
( ) ( )

β
γ ρ γ
γ ρ γ

=
+ + −
+ − −

1 1

1 1
.

2

2 (7)

For a fixed pair ( )ρ γ∗ ∗, , the boundary measurement is given by ( )β θ= ∗U sin . After solving 
the minimization problem (6), we can write γ as a function of ρ, namely

( ) ( ) ( )
( ) ( )

γ ρ
β ρ β
β ρ β

=
+ + −
+ − −

∗ ∗

∗ ∗

1 1

1 1
.

2

2 (8)

By setting ρ =∗ 0.2 and after taking the limit cases →γ∗ 0, →γ∗ 1 and →γ ∞∗ , the plot of ( )γ ρ  
with respect to ρ is shown in figure 2, where we can observe the lack of uniqueness when both 
the radius ρ∗ and the contrast γ∗ are simultaneously unknown.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Figure 2. Counter-example of lack of uniqueness when both the topology and contrast 
are simultaneously unknown.
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3. Topological asymptotic expansion

In this paper we deal with the reconstruction of ( )∈ Ωγ∗k C  from total or partial boundary mea-
surement using the topological sensitivity analysis concept [26]. Therefore, let us consider 
ω = ∅ and = |ω=∅u u0  solution of

[ ( )]
( )

( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪⎪

∫
∫ ∫

= Ω
= − ∇

⋅ = ∂Ω

=

=

∂Ω

Γ Γ

q u
q u k u

q u n Q

Q

u U

div 0 in ,
,

on ,

0,

,

0

0 0

0

0
m m

 (9)

where k is a constant that represents the electrical conductivity of the background. In this par-
ticular case, the following notation for the shape function is introduced

( ) ( )∫= −
Γ

J u u U .0 0 0
2

m
 (10)

Let us perturb the domain Ω by nucleating—simultaneously—a number N of circular inclu-
sions ( )εB xii  with contrast γi, = �i N1, , , as shown in figure 3. We assume that ( )⊂ΩεB xii  is 
a ball with center at ∈Ωxi  and radius εi, such that ( ) ( )∩ = ∅ε εB x B xi ji j  for ≠i j. We introduce 
the notations ( )ξ = �x x, , N1  and ( )ε ε ε= �, , N1 , whether necessary. The topologically per-
turbed counterpart of the shape functional is defined as follows

( ) ( )∫= −ε ε ε
Γ

J u u U ,2

m
 (11)

where εu  is solution of the following boundary value problem

⋃
⋃

[ ( )]
( )

( )

[[ ]] ( )

[[ ( )]] ( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪⎪

∫
∫ ∫

γ
= Ω
= − ∇

⋅ = ∂Ω

=

=

= ∂

⋅ = ∂

ε ε

ε ε ε ε

ε ε

ε

ε ε

ε ε ε

∂Ω

Γ Γ

=

=

q u

q u k u

q u n Q

Q

u U

u B x

q u n B x

div 0 in ,

,

on ,

0,

,

0 on ,

0 on ,

i
N

i

i
N

i

1

1

m m

i

i

 (12)

Figure 3. Perturbed domain representation.
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with the contrast defined as

( )
\ ( )

( )
γ γ

γ
= =

∈Ω

∈
ε ε

ε

ε

=⋃
⎧
⎨
⎪

⎩⎪
x

x B x

x B x

1, if

, if .
i

N
i

i i

1
i

i

 (13)

3.1. Asymptotic expansion of the solution

General results for the asymptotic expansions of solutions in singularly perturbed domains 
were originally considered in [14, 21]. When perturbations are included in Ω, discrepancies 
over the inclusions ( )εB xii  in problem (9) appear. The idea is to introduce boundary layers 
which compensate for such discrepancies. Thus, let us consider the following ansätz for the 
asymptotic expansion of εu

∑

∑∑

ε ε ε ε

ε ε ε

= + + + +

+ + +

ε

ε

=

= =
≠

u x u x w x u x w x u x

w x u x u x .

i

N

i i i i i i i i

i

N

j
j i

N

i
j

i i j i
j

0
1

2 4

1 1

2 2( )

( ) ( ) ( ( / ) ˜ ( ) ˜ ( / ) ˜̃ ( ))

( / ) ( ) ˜̃ ( )
 (14)

Before we continue, let us give a rough explanation of each term in the above expansion. 
The boundary layers wi are introduced to compensate for the first and second order terms of 
the Taylor’s expansion of ∇u0 around xi. The problem associated with ũi compensates for 
the discrepancy introduced on ∂Ω by one term of wi. The boundary layers w̃i compensate for 
the first and third term of the Taylor’s expansion of ˜∇ui and ∇u, respectively. There are still 
discrepancies left on ∂Ω by one term of each set of boundary layers wi and w̃i, which are com-
pensated by ˜̃ui. The terms wi

j and ui
j are introduced to take into account interactions between 

different inclusions. Finally, ˜̃εu  compensate for all remainder discrepancies. Each term of the 
ansätz (14) are now explicitly defined. In what follows, the notation ( )( )ϕ∇ −y x xn

i
n repre-

sents the derivative of order n of a function ϕ in the direction (x  −  xi) evaluated at y.
We start with the boundary layers ( / )εw xi i , for = �i N1, , , which are solutions of

[ ( )]
( )

→
[[ ]] ( )

[[ ( )]] ( )( ( ) ( ) ) ( )

γ

γ ε

= Ξ

= − ∇
∞

= ∂

⋅ = − ∇ ⋅ − ∇ ⋅ ∂

ε ε

ε ε

ε

ε ε

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

R
q w

q w k w

w
w B x

q w n k u x n u x n n B x

div 0 in ,

in ,

0 at ,
0 on ,

1 on .

i

i i

i

i i

i i i i i i

2

0
2

0

i

i

i

 

(15)

where ( )( ) \ ( )Ξ = ∪ε ε εRB x B x: i i
2

i i . By fixing the notation

ρ
γ
γ

γ γ
γ

=
−
+

= =
∈
∈ε ε

ε

ε

⎧
⎨
⎩

R
x

x B x

x B x

1

1
and

1, if
, if ,i

i

i

i

i i

2

i i

i

i

( ) \ ( )
( ) (16)

the solutions of (15) in \ ( )R εB xi
2

i  are given by

( / ) ( ) ( )ε ε ε= +w x g x h x ,i i i i i i
2 4 (17)

where

( )
∥ ∥

( ) ( )
ρ

=
−

∇ ⋅ −g x
x x

u x x xi
i

i
i i2 0 (18)
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and

( )
∥ ∥

( )( )
ρ

=
−

∇ −h x
x x

u x x x
2

.i
i

i
i i4

2
0

2
 (19)

The functions ( / )εw xi
j

j , ≠j i, satisfy

γ

γ ε

= Ξ

= − ∇

∞

= ∂

⋅ = − ∇ ⋅ ∂

ε ε

ε ε

ε

ε ε

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

R
q w

q w k w

w

w B x

q w n k A x u x n B x

div 0 in ,

in ,

0 at

0 on ,

1 on .

i
j

i
j

i
j

i
j

i
j

j

i
j

j j i i j i j j

2

2
0

i

j

j

[ ( )]
( )

→
[[ ]] ( )

[[ ( )]] ( ) ( ) ( ) ( )

 (20)

The second order tensor Ai(x) is defined by

( )
∥ ∥

( ) ( )
∥ ∥

⎡
⎣⎢

⎤
⎦⎥

ρ
=

−
−

− ⊗ −
−

A x
x x

I
x x x x

x x
2 .i

i

i

i i

i
2 2 (21)

Thus, the solutions of (20) in \ ( )R εB xj
2

j  are given by

( / ) ( )ε ε ε θ=w x x ,i
j

j i j i
j2 2 (22)

where

( )
∥ ∥

( ) ( ) ( )θ
ρ ρ

=
−

∇ ⋅ −x
x x

A x u x x x .i
j i j

j
i j i j2 0 (23)

Since the boundary layers wi introduce discrepancies on ∂Ω, we construct ũi, = �i N1, , , 
such that

[ ( ˜ )]
( ˜ ) ˜

( ˜ ) ( )

˜

⎧

⎨

⎪
⎪

⎩

⎪
⎪ ∫ ∫

= Ω
= − ∇ Ω

⋅ = − ⋅ ∂Ω

= −
Γ Γ

q u
q u k u

q u n q g n

u g

div 0 in ,
in ,
on ,

,

i

i i

i i

i i
m m

 (24)

where gi is given by (18).
The boundary layers ˜ ( / )εw xi i , = �i N1, , , satisfy

[ ( ˜ )]
( ˜ ) ˜

˜ →
[[ ˜ ]] ( )

[[ ( ˜ )]] ( ) ˜ ( ) ( ) ( )

γ

γ ε

= Ξ

= − ∇
∞

= ∂

⋅ = − ∇ ⋅ + ∇ ∂

ε ε

ε ε

ε

ε ε⎜ ⎟

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪ ⎛

⎝
⎞
⎠

R
q w

q w k w

w
w B x

q w n k u x n u x n B x

div 0 in ,

in ,

0 at ,
0 on ,

1
1

2
on ,

i

i i

i

i i

i i i i i i i

2

2 3
0

3

i

i

i

 

(25)

whose explicit solutions in \ ( )R εB xi
2

i  are given by

˜ ( / ) ˜ ( ) ˜ ( )ε ε ε= +w x g x h x ,i i i i i
4 6 (26)
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where

˜ ( )
∥ ∥

˜ ( ) ( )
ρ

=
−

∇ ⋅ −g x
x x

u x x xi
i

i
i i i2 (27)

and

˜ ( )
∥ ∥

( )( )
ρ

=
−

∇ −h x
x x

u x x x
2

.i
i

i
i i6

3
0

3
 (28)

Now, we chose ˜̃ui such that it compensates for the discrepancies of order ( )εO i
4  left on the 

boundary ∂Ω by w̃i and wi for = �i N1, , , namely,

[ ( ˜̃ )]
( ˜̃ ) ˜̃

( ˜̃ ) ( ˜ )

˜̃ ˜

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪ ∫ ∫

= Ω
= − ∇ Ω

⋅ = − + ⋅ ∂Ω

= − +
Γ Γ

q u

q u k u

q u n q h g n

u h g

div 0 in ,

in ,

on ,

.

i

i i

i i i

i i i
m m

 (29)

The boundary layers wi
j also produce discrepancies on ∂Ω, which are compensated by ui

j 
solution of the following boundary value problems for = �i j N, 1, , , with ≠i j,

[ ( )]
( )

( ) ( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪ ∫ ∫

θ

θ

= Ω

= − ∇ Ω

⋅ = − ⋅ ∂Ω

= −
Γ Γ

q u

q u k u

q u n q n

u

div 0 in ,

in ,

, on ,

,

i
j

i
j

i
j

i
j

i
j

i
j

i
j

m m

 (30)

where θi
j is given by (23).

Finally, the last term of the expansion (14), namely ˜̃εu , has to compensate for all remainder 
terms, so that it is solution to the following boundary value problem

( )⋃ ⋃

⋃
⋃

[ ( ˜̃ )] ⋃ ( ) \ ( )

( ˜̃ ) ˜̃

( ˜̃ ) ( ˜ )

˜̃ ˜

[[ ˜̃ ]] ( )

[[ ( ˜̃ )]] ˜̃ ( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

∫ ∫

∑

∑

γ

ε

ε

= Ω

= − ∇ Ω

⋅ = − ⋅ ∂Ω

= −

= ∂

⋅ = ∂

ε ε ε ε

ε ε ε ε

ε ε ε

ε

ε ε

ε ε ε ε

= =

=

Γ = Γ

=

=

q u B x B x

q u k u

q u n q h n

u h

u B x

q u n g B x

div 0 in ,

in ,

on ,

0 on ,

on ,

i
N

i i
N

i

i

N

i i

i

N

i i

i
N

i

i
N

i

1 1

1

6

1

6

1

1

i i

m m

i

i

 

(31)

where,

˜̃ ( )∑∑ ∑ ∑ ∑∑ε ε ε ε ε ε= + + + ∂ +ε
= =

≠
= = = =

≠

g g g g h g ,
i

N

j
j i

N

i j ij
a

i

N

i i
b

i

N

i i
c

n i
i

N

j
j i

N

i j ij
1 1

2

1

3

1

4

1 1

2 2
 (32)
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with

( ( ) ) ( )ξ= ∇ ∇ ⋅g A n u x n ,ij
a

i j j i j0 (33)

( ) ( )γ ξ= − ∇g k u n1
1

3!
,i

b
i i

4
0

4 (34)

( ) ˜̃γ= − ∂g k u1 ,i
c

i n i (35)

∥ ∥
( ) ( ) ( )

γ
=

−

−
∇ ⋅ −g k

x x
A x u x x x

1
,ij

j

j
i j i j2 0 (36)

for ( )ξ δ δ= + −x x1j j, with ( )δ∈ 0, 1  and ( )∈ εx B xjj .

Lemma 3. Let ˜̃εu  be solution to (31) or equivalently solution to the following variational 
problem: find ˜̃ ∈ε εUu , such that

( ˜̃ ) ˜̃ ( ˜ )∫ ∫ ∫ ∑η η ε η η− ⋅ ∇ + − ⋅ = ∀ ∈ε ε ε ε
Ω ∂ ∂Ω =ε

Vq u g q h n 0 ,
B i

N

i i
1

6
 (37)

where the set εU  and the space V are defined as

( ) ˜
⎧
⎨
⎩

⎫
⎬
⎭∫ ∫∑ϕ ϕ ε ρ= ∈ Ω =ε

Γ = Γ
U H h: :

i

N

i i i
1

1

6

m m

 (38)

and

( )
⎧⎨
⎩

⎫⎬
⎭∫ϕ ϕ= ∈ Ω =

Γ
V H: : 0 .1

m

 (39)

Then, we have the estimate ∥ ˜̃ ∥ ( )( ) ε= | |ε Ωu OH
5

1  for the remainder, where { }ε ε ε| | = �: max , , N1 .

Proof. By taking ˜̃η ϕ= −ε εu  in (37), with ˜ϕ ε ρ= ∑ε = hi
N

i i i1
6  on ∂Ω, we have

( ˜̃ ) ˜̃ ( ˜̃ ) ˜̃ ˜̃ ˜̃

( ˜ ) ˜̃ ( ˜ )

∫ ∫ ∫ ∫

∫ ∫∑ ∑

ϕ ϕ

ε ε ϕ

− ⋅ ∇ + ⋅ ∇ + −

− ⋅ + ⋅ =

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε

Ω Ω ∂ ∂

∂Ω = ∂Ω =

ε ε

q u u q u g u g

q h nu q h n 0

B B

i

N

i i
i

N

i i
1

6

1

6

 

(40)

Integration by parts yields

( ˜̃ ) ˜̃ [ ( ˜̃ )] ( ˜̃ ) ( ˜̃ )

˜̃ ˜̃ ˜̃ ( ˜ ) ˜̃ ( ˜ )

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫∑ ∑

ϕ ϕ ϕ

ϕ ε ε ϕ

− ⋅ ∇ − + ⋅ + ⋅

+ − − ⋅ + ⋅ =

ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

Ω Ω ∂Ω ∂

∂ ∂ ∂Ω = ∂Ω =

ε

ε ε

⎡⎣⎡⎣ ⎤⎦⎤⎦q u u q u q u n q u n

g u g q h nu q h n

div

0.

B

B B i

N

i i
i

N

i i
1

6

1

6

 

(41)

Using equation (31), we obtain the equality
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( ˜̃ ) ˜̃ ( ˜ ) ˜̃ ˜̃ ˜̃∫ ∫ ∫∑ ε− ⋅ ∇ = ⋅ −ε ε ε ε ε ε ε
Ω ∂Ω = ∂ ε

q u u q h nu g u
i

N

i i
B1

6
 (42)

From the Cauchy–Schwarz inequality together with the trace theorem we have

( ˜̃ ) ˜̃ ⩽ ∥ ˜̃ ∥ ( ˜ ) ∥ ˜̃ ∥ ∥ ˜̃ ∥

⩽ ∥ ˜̃ ∥ ∥ ˜̃ ∥ ∥ ˜̃ ∥

( )
( )

( ) ( )

( ) ( ) ( )

∫ ∑ε

ε

− ⋅ ∇ | | +

| | +

ε ε ε ε ε ε ε

ε ε ε

Ω
∂Ω

= ∂Ω
∂ ∂

Ω

ε ε

ε ε

−q u u u q h g u

C u C g u .

L
i

N

i

L
H B H B

H H B L B

6

1

1
6

2

2

2

1
2

1
2

1 1 2

 
(43)

Now, let us make use of the Hölder inequality together with the Sobolev embedding theorem 
for 1/p  +  1/q and ⩾q 1, to obtain

∥ ˜̃ ∥ ⩽ ∥ ˜̃ ∥ ⩽ ∥ ˜̃ ∥( )
/

( ) ( )ε ε| | | |ε ε ε Ωε ε
u C u C u ,L B

q
L B H3

1
4p2 2 1 (44)

where we have used the interior elliptic regularity of function ˜̃εu . In addition, by using defini-
tion (32), we obtain

∥ ˜̃ ∥ ⩽( ) ε| |ε ε
g C ,H B 5

4
1 (45)

Therefore,

( ˜̃ ) ˜̃ ⩽ ∥ ˜̃ ∥ ( )∫ ε− ⋅ ∇ | |ε ε ε ε
Ω

Ωq u u C u .H6
5

1 (46)

Finally, from the coercivity of the bilinear form on the left hand side of the above inequality 
we obtain

∥ ˜̃ ∥ ⩽ ( ˜̃ ) ˜̃ ⩽ ∥ ˜̃ ∥( ) ( )∫ ε− ⋅ ∇ | |ε ε ε ε εΩ
Ω

Ωc u q u u C u ,H H
2

6
5

1 1 (47)

which leads to the result, namely ∥ ˜̃ ∥ ⩽( ) ε| |ε Ωu CH
5

1 , with constant C  =  C6/c independent  
of ε. □

3.2. Asymptotic expansion of the shape functional

From the ansätz for εu  given by (14), we can obtain the asymptotic expansion of the shape 
functional ( )ε εJ u  defined through (11) with respect to ε. In fact, the shape functional is defined 
on the boundary Γm. Then, let us evaluate the expansion for εu  on the boundary ∂Ω to obtain 

( )ϕ| = + |ε ε∂Ω ∂Ωu u0 , where ϕε is such that

( ( ˜ ) ( ˜ ˜̃ ) ˜ ) ( ( )) ˜̃∑ ∑∑ϕ ε ε ε ε ε θ= + + + + + + + +ε ε
= = =

≠

g u h g u h u u .
i

N

i i i i i i i i i
i

N

j
j i

N

i j i
j

i
j

1

2 4 6

1 1

2 2

 

(48)

Therefore,

( ) ( ) ( ) ( )∫ ∫ ∫ϕ ϕ ϕ= + − = + − +ε ε ε ε ε
Γ Γ Γ

J Ju u U u u U2 .0
2

0 0 0
2

m m m
 (49)
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Let us now collect the terms on the right-hand side of (49) in power of ε. The first one is 
independent of ε. It is actually the original shape functional. In view of (48), the second term 
can be written as

( ) ( )( ˜ ) ( )( ˜ ˜̃ )

( )( ) ( )

∫ ∫ ∫

∫

∑

∑∑ ∑

ϕ ε ε

ε ε θ ε

− = − + + − + +

+ − + +

ε
Γ = Γ Γ

= =
≠

Γ =

⎛
⎝
⎜

⎞
⎠
⎟

E
�

�

u U u U g u u U h g u

u U u ,

i

N

i i i i i i i

i

N

j
j i

N

i j i
j

i
j

0
1

2
0

4
0

1 1

2 2
0

1

2

m m m

m

 (50)
where, from the Cauchy–Scharwz inequality together with lemma 3, we have

( ) ( ) ˜ ( )∫∑ε ε ε= − = | |
= Γ

E u U h O ,
i

N

i i1
1

6
0

6

m

 (51)

( ) ( ) ˜̃ ( )∫ε ε= − = | |ε
Γ

E u U u O ,2 0
5

m
 (52)

The last term on the right-hand side of (49) can be expanded as follows

( ˜ ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∫ ∫ ∑ ∑ϕ ε ε= + +ε

Γ Γ = =�
�Eg u ,

i

N

i i i
2

1

2
2

3

15

m m

 (53)

with

( ) ( ˜ ) ( ˜ ˜̃ ) ( )∫ ∑ ∑ε ε ε ε= + + + = | |
Γ = =

E g u h g u O2 ,
i

N

i i i
i

N

i i i i3
1

2

1

4 6

m

 (54)

( ) ( ˜ ˜̃ ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∫ ∑ε ε ε= + + = | |

Γ =

E h g u O2 ,
i

N

i i i i4
1

4
2

8

m

 (55)

( ) ( ) ( ˜ ) ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∫ ∑∑ ∑ε ε ε θ ε ε= + + = | |

Γ = =
≠

=

E u g u O2 ,
i

N

j
j i

N

i j i
j

i
j

i

N

i i i5
1 1

2 2

1

2 6

m

 (56)

( ) ( ) ( ˜ ˜̃ ) ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∫ ∑∑ ∑ε ε ε θ ε ε= + + + = | |

Γ = =
≠

=

E u h g u O2 ,
i

N

j
j i

N

i j i
j

i
j

i

N

i i i i6
1 1

2 2

1

4 8

m

 (57)

( ) ( ) ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∫ ∑∑ε ε ε θ ε= + = | |

Γ = =
≠

E u O ,
i

N

j
j i

N

i j i
j

i
j

7
1 1

2 2

2

8

m

 (58)

( ) ˜ ( ˜ ) ( )∫ ∑ ∑ε ε ε ε= + = | |
Γ = =

E h g u O ,
i

N

i i
i

N

i i i8
1

6

1

2 8

m

 (59)
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( ) ˜ ( ˜ ˜̃ ) ( )∫ ∑ ∑ε ε ε ε= + + = | |
Γ = =

E h h g u O2 ,
i

N

i i
i

N

i i i i9
1

6

1

4 10

m

 (60)

( ) ˜ ( )
⎛

⎝
⎜

⎞

⎠
⎟∫ ∑ε ε ε= = | |

Γ =

E h O ,
i

N

i i10
1

6
2

12

m

 (61)

( ) ˜ ˜̃ ( )∫ ∑ε ε ε= = | |ε
Γ =

E h u O ,
i

N

i i11
1

6 11

m

 (62)

( ) ˜̃ ( ˜ ) ( )∫ ∑ε ε ε= + = | |ε
Γ =

E u g u O2 ,
i

N

i i i12
1

2 7

m

 (63)

( ) ˜̃ ( ˜ ˜̃ ) ( )∫ ∑ε ε ε= + + = | |ε
Γ =

E u h g u O2 ,
i

N

i i i i13
1

4 9

m

 (64)

( ) ˜̃ ˜ ( )∫ ∑ε ε ε= = | |ε
Γ =

E u h O ,
i

N

i i14
1

6 11

m

 (65)

u O ,15
2 10

m

E ( ) ˜̃ ( )∫ε ε= = | |ε
Γ

 (66)

where we have used again the Cauchy–Scharwz inequality together with lemma 3.
Finally, after replacing (50) and (53) into (49), we obtain the following asymptotic expan-

sion for the topologically perturbed shape functional ( )ε εJ u

∫ ∫

∫ ∫

∑

∑∑ ∑

ε ε

ε ε θ ε ε

= + − + + − + +

+ − + + + +

ε ε
= Γ Γ

= =
≠

Γ Γ =

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J J

E

u u u U g u u U h g u

u U u g u

2

2 ,

i

N

i i i i i i i

i

N

j
j i

N

i j i
j

i
j

i

N

i i i

0 0
1

2
0

4
0

1 1

2 2
0

1

2

2

m m

m m

( ) ( ) ( )( ˜ ) ( )( ˜ ˜̃ )

( )( ) ( ˜ ) ( )

 

(67)

with

( ) ( ) ( )∑ε ε ε= = | |
=�

�E E O .
1

15
5 (68)

3.3. Introduction of adjoint states

Note that to evaluate expansion (67), we have to solve the problems associated with the non-
local terms ũi and ˜̃ui for each point xi, and ui

j for each pair of points xi and xj. However, thanks 
to the representation we have found, the non-local terms which appears in the first, second and 
third integrals in (67) can be replaced by just one adjoint state independent of the points xi and xj.  
On the other hand, the term ũi also appears in the last integral of expansion (67) in a quadratic 
form, so that ũi has to be computed. Therefore, the adjoint state will be used to replace only 
the terms involving ˜̃ui and ui

j. In fact, expansion (67) can be rewritten as
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( ) ( ) ( )( ˜ ) ( )( ˜ )

( ) ˜̃ ( )

( ) ( ˜ ) ( )

∫ ∫

∫ ∫

∫ ∫

∑

∑ ∑

∑∑ ∑

ε ε

ε ε ε

ε ε θ ε ε

= + − + + − +

+ − + −

+ − + + +

ε ε
= Γ Γ

= Γ =
≠

Γ

= =
≠

Γ Γ =

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J J

E

u u u U g u u U h g

u U u u U u

u U g u

2

2

2 .

i

N

i i i i i i

i

N

i i
j
j i

N

i j i
j

i

N

j
j i

N

i j i
j

i

N

i i i

0 0
1

2
0

4
0

1

4
0

1

2 2
0

1 1

2 2
0

1

2

2

m m

m m

m m

 

(69)

Let us introduce an adjoint state solution of the following variational problem: find ∈ Vv , 
such that

( ) ( )∫ ∫η η η⋅ ∇ = − ∀ ∈
Ω Γ

Vq v u U2 , ,0
m

 (70)

where the space V is given by (39). The associated strong form of (70) is written as

[ ( )]
( )

( ) ( )
( ) \

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪ ∫

= Ω
= − ∇

⋅ = − Γ
⋅ = ∂Ω Γ

=
Γ

q v
q v k v

q v n u U

q v n

v

div 0 in ,
,

2 on ,
0 on ,

0.

m

m

0

m

 (71)

The weak form of (29) reads: find ˜̃ ∈Uui i, such that

( ˜̃ ) ( ˜ )∫ ∫η η η⋅ ∇ + + ⋅ = ∀ ∈
Ω ∂Ω

Vq u q h g n 0, ,i i i (72)

where the space V is given by (39) and the set Ui is defined as

( ) ˜
⎧⎨
⎩

⎫⎬
⎭∫ ∫ϕ ϕ= ∈ Ω = − +

Γ Γ
U H h g: : .i i i

1

m m

 (73)

By setting ˜̃η ϕ= +ui i as test function in (70), with ˜ϕ = +h gi i i on ∂Ω, we obtain the equality

( ) ( ˜̃ ) ( )( ˜̃ )∫ ∫ϕ ϕ⋅ ∇ + = − +
Ω Γ

q v u u U u2 .i i i i0
m

 (74)

Integration by parts yields

( ) ˜̃ ( ) ˜̃ ( ) ( )

( ) ˜̃

∫ ∫ ∫ ∫

∫

ϕ ϕ⋅ ∇ = − + − − ⋅

= −

Ω Γ Γ ∂Ω

Γ

q v u u U u u U q v n

u U u

2 2

2 ,

i i i i

i

0 0

0

m m

m

 (75)

since v solves (71). Now, let us set η = v as test function in (72) to obtain the equality

( ˜̃ ) ( ˜ )∫ ∫⋅ ∇ = − + ⋅
Ω ∂Ω

q u v q h g n v.i i i (76)

After comparing the obtained results we have the following important identity
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( ) ˜̃ ( ˜ )∫ ∫− = − + ⋅
Γ ∂Ω

u U u q h g n v2 .i i i0
m

 (77)

In addition, the weak form of (30) can be written as: find ∈Uui
j

i
j, such that

( ) ( )∫ ∫η θ η η⋅ ∇ + ⋅ = ∀ ∈
Ω ∂Ω

Vq u q n 0, ,i
j

i
j

 (78)

with the space V given by (39) and the set U i
j given by

( )
⎧⎨
⎩

⎫⎬
⎭∫ ∫ϕ ϕ θ= ∈ Ω = −

Γ Γ
U H: ; .i

j
i
j1

m m

 (79)

After setting η ϕ= +ui
j

i
j as test function in (70), with ϕ θ=i

j
i
j on ∂Ω, there is

( ) ( ) ( )( )∫ ∫ϕ ϕ⋅ ∇ + = − +
Ω Γ

q v u u U u2 .i
j

i
j

i
j

i
j

0
m

 (80)

From integration by parts we obtain

( ) ( ) ( ) ( )

( )

∫ ∫ ∫ ∫

∫

ϕ ϕ⋅ ∇ = − + − − ⋅

= −

Ω Γ Γ ∂Ω

Γ

q v u u U u u U q v n

u U u

2 2

2 ,

i
j

i
j

i
j

i

i
j

0 0

0

m m

m

 (81)

where we have used (71). By comparing the last two results, the following important equality 
holds true

( ) ( )∫ ∫ θ− = − ⋅
Γ ∂Ω

u U u q n v2 .i
j

i
j

0
m

 (82)

Finally, we can respectively replace the third and fourth integrals in (69) by the obtained 
equalities (77) and (82), namely

( ) ( ) ( )( ˜ )

( )( ˜ ) ( ˜ )

( ) ( ) ( ˜ ) ( )

∫

∫ ∫

∫ ∫ ∫

∑

∑

∑∑ ∑

ε

ε

ε ε θ θ ε ε

= + − +

+ − + − + ⋅

+ − − ⋅ + + +

ε
= Γ

= Γ ∂Ω

= =
≠

Γ ∂Ω Γ =

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

J J

E

u u u U g u

u U h g q h g n v

u U q nv g u
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 (83)

Therefore, without any approximation, the integrals in (69) involving the non-local terms ũi 
and ui

j have been replaced by just one adjoint state v, solution of (71), which does not depend 
on the points xi and xj.

4. A non-iterative reconstruction algorithm

In this section we present the resulting non-iterative reconstruction algorithm based on the 
 expansion (83). The topological asymptotic expansion of the shape functional ( )εJ u  given by (83)  
can be rewritten in the following compact form
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( ) ( ) ( ) ( ) ( )ξ α ξ α α ε= + ⋅ + ⋅ +εJ J Eu u d H
1

2
,0 (84)

where ( )ξd  and ( )ξH  are the first and second order topological derivatives, respectively. In 
addition, ( )α ε ε= �, , N1

2 2  and ( )εE  is the remainder.
The vector ( )ξd  and the matrix ( )ξH  are defined as

( ) ( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

ξ ξ= =�

�
�

� � � �
�

d
d

d
H

h h h
h h h

h h h

: and :

,N

N

N

N N NN

1
11 12 1

21 22 2

1 2

 (85)

where each component di of the topological derivative vector ( )ξd  is given by

( ) ( )( ˜ )∫= = − − +
Γ

d b i u U g u: 2i i i0
m

 (86)

while the entries hij:  =  A(i, j) of the topological Hessian matrix ( )ξH  are defined as

( ) ( )( ˜ ) ( ( ˜ )) ( ˜ )∫ ∫ ∫= − + − + ⋅ + +
Γ ∂Ω Γ

A i i u U h g q h g n v g u, 4 2 2 ,i i i i i i0
2

m m

 

(87)

and, for ≠i j,

( ) ( )( ) ( ) ( ˜ )( ˜ )∫ ∫ ∫θ θ θ θ= − + − + ⋅ + + +
Γ ∂Ω Γ

A i j u U q n v g u g u, 2 2 .i
j

j
i

i
j

j
i

i i j j0
m m

 

(88)

In addition, the functions gi(x), hi(x), ˜ ( )g xi  and ( )θ xi
j  are respectively given by (18), (19), 

(27) and (23). Finally, the auxiliary function ũi solves (24) and v is solution to the adjoint 
equation (71).

Note that the expression on the right-hand side of (83) depends explicitly on the number N 
of anomalies, their positions xi and sizes α. Thus, let us now introduce the quantity

( ) ( ) ( )ξ α ξ α ξ α αΨ = ⋅ + ⋅N d H, ,
1

2
. (89)

After minimizing (89) with respect to α we obtain the following linear system

( ( )) ( )α ξ ξ= − −H d .1 (90)

Let us replace ( )α α ξ=  solution of (90) in (89), to obtain

( ( ) ) ( ) ( )ξ α ξ ξ α ξΨ = − ⋅N d, ,
1

2
. (91)

Therefore, the pair of vectors ( )ξ α� �,  which minimizes (89) is given by

{ }( ) ( ) ( )ξ ξ α ξ α α ξ= − ⋅ =
ξ∈

� � �d: arg min
1

2
and : ,

X
 (92)

where X is the set of admissible locations of the inclusions. From these elements the algorithm 
1 is devised. Its input data are given by:

 • The number N of anomalies we are going to find;
 • The first d and second H order topological derivatives;
 • The size of the grid where we are seeking for the anomalies, denoted by ng;
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As a result, the algorithm returns the optimum location and size of the anomalies ( )ξ α� �,  for 
a given number of trial inclusions N, and the associated minimum value of the functional (91) 
denoted as �S . For more sophisticated approaches based on meta-heuristic and multi-grid 
methods, we refer to [20]. In algorithm 1, Π maps the vector of nodal indices ( )=I i i i, , ..., N1 2  
into the corresponding vector of nodal coordinates ξ.

5. Numerical experiments

Let us apply algorithm 1 for solving some examples of the EIT problem. We consider a disk 
of unitary radius its with center at the origin, namely ( )Ω = B 01 . Its electrical conductivity is 
assumed to be uniform and given by k  =  1. The boundary of the disk ∂Ω is subdivided into 16 
disjoint pieces representing the electrodes. One pair of such electrodes is selected for injecting 
and draining the electrical current. Therefore, the excitation Q is given by a pair =Q 1in  of 
injection and = −Q 1out  of draining. The remainder part of the boundary ∂Ω remains insu-
lated. The associated potential U is measured on the whole Γ = ∂Ωm  or on a part ⊊Γ ∂Ωm  
of the boundary of the disk. For more than one measurement, this procedure is repeated by 
changing the selected pair of injection and draining electrodes. From this information we are 
going to reconstruct an unknown number of anomalies with contrast γ = 2i , for = ∗�i N1, , . 
See sketch in figure 4.

The auxiliary boundary value problems are solved using a finite element mesh with 32 768 
elements and 16 641 nodes. From these solutions the sensitivities can be numerically evalu-
ated at any point of the mesh. However, because of the high complexity of algorithm 1 [20], 
a sub-mesh is defined over the finite element mesh where the combinatorial search is per-
formed, leading to the optimal solution ( )α ξ� �,  defined in the sub-mesh.

In the case of noisy data, the electrical conductivity ∗k  is corrupted with white Gaussian noise 
(WGN) of zero mean and standard deviation μ. Therefore, ∗k  is replaced by ( )µ ν= +µ

∗ ∗k k 1 , 
where ν is a function assuming random values in the interval (−1, 1) and μ corresponds to 
the noise level.

5.1. Complete boundary measurements

In this section we present five examples concerning total boundary measurements ( )Γ = ∂Ωm . 
The first example shows the sensitivity of the reconstruction with respect to the size of the 
sub-mesh. In the second example we propose a non-iterative procedure to find the unknown 
number of anomalies. In the third example a L-shaped anomaly is approximated by a number 
of trial balls. Finally, in the fourth and fifth examples the robustness of the reconstruction 
method with respect to noisy data is investigated.

5.1.1. Example 1: sensitivity of the reconstruction with respect to the size of the sub-mesh. In 
this case, the sensitivity of the method with respect to the size of the sub-mesh is studied. We 
consider three sub-meshes, namely, the first one with 81 interior nodes, the second one with 
289, and the third sub-mesh with 1089 interior nodes. The target ω∗ consists of a ball-shaped 
anomaly with radius ε =∗ 0.15 and center at ( )=∗x 0.4431, 0.313 . One boundary measure-
ment is used in the reconstruction process.

We start with a sub-mesh of 81 trial points. Then it is uniformly refined twice, leading 
respectively to 289 and 1089 trial points. The results associated with each discretization are 
respectively shown in figures 5(a)–(c). From an inspection of the results presented figure 5, 
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we observe that the more the sub-mesh is refined the better is the reconstruction. In particular, 
if the center of the target does not belongs to the set of nodes of the sub-mesh, namely ∉∗x X, 
the algorithm returns a location �x  which is the closest to ∗x , as shown in figures 5(a) and (b). 
Finally, when ∈∗x X, the algorithm returns the exact location, as can be seen in figure 5(c). In 
all cases, each resulting size ε� is very close to the actual one ε∗. For a quantitative analysis of 
the results obtained, see the convergence curves for ∥ ∥− ∗�x x  and ε ε| − |∗�  in figure 6.

In order to show different features of the reconstruction algorithm 1, from now on we 
assume that the center of each anomaly to be reconstructed coincides with one point of the 
sub-mesh, which has 289 points.

5.1.2. Example 2: seeking for the number of anomalies. In this example the target consists of 
three anomalies with different sizes, as showed in figure 7 and table 1. We use three boundary 
measurements in the reconstruction process.

We start the reconstruction algorithm by taking N  =  1 and proceed to increasing the value 
of N until that the vector of optimal sizes α� contains one entry with negligible value. The 
results are shown in figure  8. For N  =  1 and N  =  2 the solutions are clearly far from the 
target. For N  =  3 the locations are perfectly reconstructed and the sizes are very close to 
the target. Finally, for N  =  4 there is an additional anomaly with negligible size, namely 
ε ≈ × −� 8.4556 104

3. Therefore we can conclude that the correct quantity of anomalies is 
=�N 3. Note that this procedure is not iterative, since there is no relation between the results 

for two consecutive values of N. In addition, we can start the algorithm 1 based on an assump-
tion that there exists > ∗N N  and find a number ( )− �N N  of trial balls with negligible sizes in 

Figure 4. Model problem.

(a) (b) (c)

Figure 5. Example 1: results obtained for different sub-meshes. The red and black 
circles represent the solution and the target, respectively. (a) 81 trial points. (b) 289 trial 
points. (c) 1089 trial points.
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just one shot. The quantitative results are presented in the table 2. Note that in all cases the 
total volume and center of mass of the set of anomalies are almost preserved.

5.1.3. Example 3: simultaneous topology and shape reconstruction. In this example the 
topology as well as the shape of the anomalies are reconstructed. The target shown in figure 9 
consists of a ball and a L-shaped anomalies. The number of trial balls is set as N  =  4. The 
obtained results for different number M of boundary measurements are shown in figure 10. For 
M  =  2 the reconstruction shown in figure 10(a) is poor, whereas for M  =  4, M  =  8 and M  =  16 
the reconstructions can be considered quite good, as respectively shown in figures 10(b)–(d).

5.1.4. Example 4: reconstruction from noisy data. Now we are interested in investigating the 
robustness of the method with respect to noisy data. The target consists of four anomalies of 
same sizes, as shown in figure 11 and table 3. The electrical conductivity ∗k  is corrupted with 
a noise of level µ = 10%.

Figure 6. Example 1: convergence curves for x x∥ ∥− ∗�  and ε ε| − |∗� .

Figure 7. Example 2: target with three anomalies.

Table 1. Example 2: locations and sizes of the target anomalies.

1ω
∗

2ω
∗

3ω
∗

x∗ (−0.1768, 0.4268) (−0.3536, −0.3536) (0.4268, 0.1768)

ε∗ 0.2 0.15 0.1
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The obtained results for different number M of boundary measurements are shown in  
figure 12. For M  =  2 the reconstruction fails, as shown in figure 12(a), whereas for M  =  4, 
M  =  8 and M  =  16 the reconstructions are quite good, as shown in figures 12(b)–(d). The 
quantitative results are presented in table 4.

5.1.5. Example 5: increasing the noise level. Let us test again the robustness of the method 
with respect noisy data. The target is the same as before, namely, it consists of four anoma-
lies as shown in figure 11 and table 3. The electrical conductivity is now corrupted with dif-
ferent levels of noise, which are given by µ µ= =10%, 15% and µ = 20%, as shown in 

(a) (b)

(c) (d)

Figure 8. Experiment 2: results obtained for different number N of trial balls.  
(a) N  =  1. (b) N  =  2. (c) N  =  3. (d) N  =  4.

Table 2. Example 2: results obtained for different number N of trial balls.

N  =  1 N  =  2 N  =  3 N  =  4

1ω
� x1

� (−0.1768, 0.1768) (−0.0884, 0.3384) (−0.1768, 0.4268) (−0.1768, 0.4268)

1ε
� 0.2575 0.2283 0.2029 0.1976

2ω
� x2

� (−0.3536, −0.3536) (−0.3536, −0.3536) (−0.3536, −0.3536)

2ε
� 0.1373 0.1448 0.1454

3ω
� x3

� (0.4268, 0.1768) (0.4268, 0.1768)

3ε
� 0.0965 0.0997

4ω
� x4

� (−0.3681, 0.6387)

4ε
� 8.4556 10 3× −
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Figure 9. Example 3: target with a ball and a L-shaped anomalies.

(a) (b)

(c) (d)

Figure 10. Example 3: results obtained for different numbers M of complete boundary 
measurements. (a) M  =  2. (b) M  =  4. (c) M  =  8. (d) M  =  16.

Figure 11. Example 4: target corrupted with 10%µ =  of white Gaussian noise.
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figures 13(a), 14(a) and 15(a), respectively. The reconstructions obtained with M  =  64 bound-
ary measurements are shown in figures 13(b), 14(b) and 15(b) for µ µ= =10%, 15% and 
µ = 20%, respectively. The quantitative results are presented in table 5.

5.2. Partial boundary measurements

In this last example we consider partial boundary measurements ⊊Γ ∂Ωm . More precisely, 
the electric potential are measured on the regions representing the electrodes. See thick lines 
in figure 4.

5.2.1. Example 6: partial boundary measurements with noisy data. The target consists of three 
ball-shaped anomalies, which is corrupted with different levels of noise µ µ= =10%, 15% 
and µ = 20%, as described in table 6 and shown in figures 16(a), 17(a) and 18(a), respec-
tively. The reconstructions obtained with M  =  64 boundary measurements are shown in  
figures 16(b), 17(b) and 18(b). The quantitative results are presented in table 7.

Table 3. Example 4: location and sizes of the target anomalies.

1ω
∗

2ω
∗

3ω
∗

4ω
∗

x∗ (0.4268, 0.1768) (−0.3536, 0.4268) (−0.1768, −0.1768) (0.3681, −0.6387)
ε∗ 0.1 0.1 0.1 0.1

(a) (b)

(c) (d)

Figure 12. Example 4: solutions for different values of M and with 10%µ =  of white 
Gaussian noise. (a) M  =  2. (b) M  =  4. (c) M  =  8. (d) M  =  16.
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Table 4. Example 4: solutions for different values of M and with 10%µ =  of white 
Gaussian noise.

M  =  2 M  =  4 M  =  8 M  =  16

1ω
� x1

� (0.3536, 0.3536) (−0.3536, 0.3536) (0.3681, −0.6387) (−0.1768, −0.1768)

1ε
� 0.0993 0.1025 0.0958 0.0919

2ω
� x2

� (−0.3536, 0.3536) (0.0000, −0.2500) (0.4268, 0.1768) (0.3681, −0.6387)

2ε
� 0.1016 0.0920 0.0917 0.0981

3ω
� x3

� (0.0000, −0.2500) (0.3681, −0.6387) (−0.0884, −0.2134) (0.4268, 0.1768)

3ε
� 0.0925 0.0919 0.0898 0.0865

4ω
� x4

� (0.3681, −0.6387) (0.4268, 0.1768) (−0.2652, 0.3902) (−0.1768, 0.4268)

4ε
� 0.0953 0.0944 0.1055 0.1055

(a) (b)

Figure 13. Example 5: target corrupted with 10%µ =  of white Gaussian noise 
(left) and obtained result with M  =  64 complete boundary measurements (right).  
(a) 10%µ = . (b) M  =  64.

(a) (b)

Figure 14. Example 5: target corrupted with 15%µ =  of white Gaussian noise 
(left) and obtained result with M  =  64 complete boundary measurements (right).  
(a) 15%µ = . (b) M  =  64.
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(a) (b)

Figure 15. Example 5: target corrupted with 20%µ =  of white Gaussian noise 
(left) and obtained result with M  =  64 complete boundary measurements (right).  
(a) 20%µ = . (b) M  =  64.

Table 5. Example 5: solutions for different values of μ and M  =  64 complete boundary 
measurements.

10%µ = 15%µ = 20%µ =

1ω
� x1

� (−0.3536, 0.3536) (0.3681, −0.6387) (0.3681, −0.6387)

1ε
� 0.1009 0.0929 0.0824

2ω
� x2

� (−0.1768, −0.1768) (0.0000, −0.1250) (0.3754, −0.7813)

2ε
� 0.0823 0.0914 0.0240

3ω
� x3

� (0.3681, −0.6387) (0.3902, 0.2652) (0.2134, 0.0884)

3ε
� 0.0981 0.0772 0.0956

4ω
� x4

� (0.4268, 0.1768) (−0.2652, 0.3902) (−0.1768, 0.3018)

4ε
� 0.0984 0.0935 0.0916

Table 6. Example 6: location and sizes of the target anomalies.

1ω
∗

2ω
∗

3ω
∗

x∗ (0.4268, 0.1768) (−0.3536, −0.3536) (−0.1768, 0.4268)
ε∗ 0.1 0.1 0.1

(a) (b)

Figure 16. Target corrupted with 10%µ =  of white Gaussian noise (left) and obtained 
result with M  =  64 partial boundary measurements (right).
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6. Concluding remarks

In this paper a new reconstruction method for a class of electrical impedance tomography prob-
lems has been proposed. It relies on the topological derivatives concept. The basic idea consists 
in rewriting the inverse problem as a topology optimization problem, where a shape functional 
measuring the misfit between the boundary measurements and the electrical potentials obtained 
from the model has been minimized with respect to a set of ball-shaped anomalies of different 
sizes. The adjoint method has been evoked a posteriori, after obtaining the associated sensitivi-
ties, allowing us to derive a simpler representation for the resulting expansion, which has been 

(a) (b)

Figure 17. Target corrupted with 15%µ =  of white Gaussian noise (left) and obtained 
result with M  =  64 partial boundary measurements (right).

(a) (b)

Figure 18. Target corrupted with 20%µ =  of white Gaussian noise (left) and obtained 
result with M  =  64 partial boundary measurements (right).

Table 7. Example 6: solutions for different values of μ and M  =  64 partial boundary 
measurements.

10%µ = 15%µ = 20%µ =

1ω
� x1

� (0.4268, 0.1768) (0.3902, 0.2652) (0.0884, 0.2134)

1ε
� 0.0804 0.0795 0.1022

2ω
� x2

� (−0.3536, −0.3536) (−0.3536, −0.3536) (−0.3536, −0.3536)

2ε
� 0.0827 0.0771 0.0396

3ω
� x3

� (−0.0884, 0.4634) (−0.0884, 0.3384) (−0.0975, 0.8654)

3ε
� 0.0870 0.1007 0.0181
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truncated up to the second order term, leading to a quadratic and strictly convex form with respect 
to the volume of the inclusions. Therefore, the truncated expansion has been used to devise a 
novel non-iterative reconstruction algorithm based on a simple optimization step. As a result, the 
reconstruction process has become very robust with respect to noisy data and also independent of 
any initial guess. Finally, some numerical experiments taking into account total and partial bound-
ary measurements have been presented, showing different features of the proposed reconstruction 
algorithm. Since the proposed method can approximate accurately the unknown set of hidden 
anomalies by several balls, it can be used for supplying a good initial guess for more complex 
iterative approaches such as the ones based on level-sets methods, for instance.
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